Capillary Flow of High Pressure Polyethylene Melt
نویسندگان
چکیده
منابع مشابه
Effects of Thymolphthalein on Thermo-Oxidative Stability of High Density Polyethylene in Melt and Solid States
The present work aimed to evaluate capability of a new molecular structure to stabilize polyethylene against thermal oxidation. Hence, effects of 3,3-bis(4-hydroxy-2-methyl-5-propan-2-ylphenyl)-2-benzofuran-1-one (thymolphthalein) on thermo-oxidative stability of high density polyethylene (HDPE) in both solid and melt states were investigated and compared with those of SONGNOX 1010, a comme...
متن کاملGrafting of Acrylamide to Low Density Polyethylene During Melt Processing
Acrylamide was grafted in low density polyethylene during melt processing in the presence of a free radical initiator using a torque rheometer in a closed system. Effects of processing time, acrylamide and benzoyl peroxide concentrations were studied. FTIR studies revealed that the degree of grafting increased by an increase in acrylamide concentration. Maximum grafting was obtained at 7 mi...
متن کاملHigh-pressure vibrational properties of polyethylene.
The pressure evolution of the vibrational spectrum of polyethylene was investigated up to 50 GPa along different isotherms by Fourier-transform infrared and Raman spectroscopy and at 0 K by density-functional theory calculations. The infrared data allow for the detection of the orthorhombic Pnam to monoclinic P2(1)∕m phase transition which is characterized by a strong hysteresis both on compres...
متن کاملChemical diffusion of fluorine in jadeite melt at high pressure
The chemical diffusion of fluorine in jadeite melt has been investigated from 10 to 15 kbars and 1200 to 14OO“C using diffusion couples of jadeite melt and fluorine-bearing jadeite melt (6.3 wt.% F). The diffusion profile data indicate that the diffusion process is concentration-independent, binarv. F-O interdiffision. The F-O interdiffusion coefficient ranges from 1.3 X IO-’ to 7.1 X lo-’ cm*/...
متن کاملTransport properties of carbonated silicate melt at high pressure
Carbon dioxide, generally considered as the second most abundant volatile component in silicate magmas, is expected to significantly influence various melt properties. In particular, our knowledge about its dynamical effects is lacking over most of Earth's mantle pressure regime. Here, we report the first-principles molecular dynamics results on the transport properties of carbonated MgSiO3 liq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kobunshi Kagaku
سال: 1969
ISSN: 1884-8079,0023-2556
DOI: 10.1295/koron1944.26.738